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Abstract- In this paper, we propose a novel vector quantizer (VQ)
in the wavelet domain for the compression of electrocardiogram
(ECQG) signals. A vector called tree vector is formed first in a
novel structure, where wavelet transformed (WT) coefficients in
the vector are arranged in the order of a hierarchical tree. Then,
the tree vectors extracted from various WT subbands are
collected in one single codebook. Finally, a distortion-
constrained codebook replenishment mechanism is incorporated
into the VQ, where codevectors can be updated dynamically, to
guarantee reliable quality of reconstructed ECG waveforms.
With the proposed approach both visual quality and the
objective quality in terms of the percent of root-mean-square
difference (PRD) are excellent even in a very low bit rate. For
the entire 48 records of Lead II ECG data in the MIT/BIH
database, an average PRD of 7.3 % at 146 bits/s is obtained. For
the same test data under consideration, the proposed method
outperforms many recently published ones, including the best
one known as the SPTHT (set partitioning in hierarchical trees).
Keywords - wavelet transform, vector quantization, tree vector,
distortion-constrained codebook replenishment

I. INTRODUCTION

The online storage and transmission of electrocardiogram
(ECQ) signals are useful in many applications, including the
Holter recording and telemedicine. However, the amount of
ECG data grows with the increase of sampling rate, sample
resolution, recording time, and the number of channels, and
gradually becomes a problem in these applications when
storage space and bandwidth are very limited. The
seriousness of the problem can be relieved significantly if we
have an ECG data compression method that is capable of
reducing data redundancy and preserving the necessary
diagnosis information. This is exactly the goal of ECG data
compression techniques proposed in many literatures over the
past 30 years.

During the past 30 years, we have witnessed the
significant improvement in the coding performance of ECG
compression methods [1-6]. To push this performance
forward, here we propose a highly efficient ECG compression
method by making use of the superiority of wavelet transform
(WT) and vector quantization (VQ). In our vector formation
process, wavelet transformed coefficients in a hierarchical
tree order are taken as the components of a vector called tree
vector. The tree vectors extracted from various WT subbands
are then collected in one single codebook. This feature is an
advantage over traditional WT-VQ methods, where multiple
codebooks are needed and are usually designed separately
because numerical ranges of coefficient values in various WT
subbands are quite different. Furthermore, to preserve
necessary diagnosis information in decompressed ECG

signals, an online codebook updating mechanism for VQ
called distortion constrained codebook replenishment (DCCR)
is incorporated in our method.

In Sections IT and III, we briefly describe the WT and the
VQ with DCCR mechanism, respectively. Then, the proposed
coding method, including a novel wavelet tree vector
structure, the DCCR, and the overall coding architecture, is
given in Section IV. In Section V, the simulation results of
MIT/BIH database are presented along with discussions.
Finally, a conclusion is given in Section VI.

II. WAVELET TRANSFORM

There are several well-known properties of wavelet
transform, such as the spatial-frequency localization, energy
compaction, and cross-subband similarity, etc. With these
nice properties, WT is recognized as one of the most
powerful tools for signal processing. For a one-dimensional
signal, each WT level can be realized using two pairs of filter

[1,h] and [7 ,1N1], where one for decomposition and the
other for reconstruction and / denotes a lowpass filter and h
represents a highpass filter. For a biorthogonal discrete WT
(DWT), the filter pairs have following relationships:

B(m) = (=)™ -T(~m+1)

h(m) = (=D" - I(-m+1)
By the n-level wavelet decomposition, the original signal x
is decomposed into n+1 subbands, i.e. X, Xz, oo, Xpps

and x,,. Here and throughout this paper, we adopt the 9/7 tap

biorthogonal filters, which were applied successfully for ECG
compression [6] and image compression [7].

III. CODEBOOK REPLENISHIMENT VECTOR QUANTIZATION

Vector quantization (VQ) is a powerful source coding
technique because quantizing a set of samples (vector) is
more efficient than quantizing a sample (scalar) individually.
VQ has been an essential constituent in many ECG and image
compression algorithms, but the quantization distortion
associated with VQ is generally nonzero and varies according
to the varying characteristics of an input source. To maintain
the diagnostic features in reconstructed waveforms for a wide
variety of ECG signals, we adopt the VQ with distortion
constrained codevector replenishment mechanism (DCCR).
As the name ‘DCCR’ implies, the distortion is ‘constrained’
by the pre-predetermined threshold d,,, and the insertion of

new codevectors and the codebook update account for
‘codebook replenishment’. The distortion-constrained nature
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keeps the reconstructed distortion of VQ under controlled and
guarantees the preserving of diagnostic information if the
distortion threshold is set properly. Many useful DCCR-VQ
mechanisms have been proposed. Here, we use a simple yet
effective mechanism introduced in [8]:

Let C,={ci,cieili’K,1'=1,2,~-~,N} be the codebook at
time ¢, where c;, K, and N represent the codevector,
vector dimension, and codebook size of C,, respectively. Let
x, be a K -dimensional input vector for VQ. The principle of
DCCR mechanism is to monitor distortion between x, and
corresponding codevector ¢, , i.e. d(x,,¢.), constantly and
see if its value exceeds the distortion bound or threshold d,,

where ¢, = argmigl d(x,,¢;). If not, as in Fig. 1(a), the index

i is transmitted or stored to obtain the decoded vector %, .
At the same time, the codebook C, is updated to C,,, in the
following manner: ¢ is promoted to the first position of C,

and all the codevectors in front of it, i.e., ¢, ~c¢ are

i1
pushed down by one notch. If d(x,,¢.) > d,, as in Fig. 1(b),
X, or its approximation must be transmitted or stored as X, .
In this case, x, or the approximation is treated as a new

codevector and is inserted to the first position of the
codebook C, , all the original codevectors are pushed down by

one notch and the last one is discarded.

xt xt
—> 4—»

v

c c

clz D Push clz D Push
. D Down . D Down
S S

Promotion 0.1 i 0.1 D
c, o W
Discard
(@) (b)

Fig. 1. The DCCR mechanism. (a) d(x,,¢, )< d, case. (b) >d, case.

IV. PROPOSED METHOD

A new on-line ECG data compression method based on
WT and DCCR-VQ is proposed in this section. The method
includes a novel WT based tree structure and the
corresponding codevector arrangement for DCCR-VQ. By
using the proposed method, we not only require just one
codebook for various WT subbands, but also obtain better
coding performance.

A. Overview of the Codec

A block diagram of the proposed codec is shown in Fig. 2.
First, the ¢ th ECG segment in L-sample long is taken from

the original ECG signal S, as input vector x,. Then, an n-
level DWT decomposition is performed on x,, resulting in
n+1 wavelet coefficient subbands: x;,, X,, ..., Xg,, and
X, .- We extract m tree vectors Xy j=12,---, m, from
these subbands in a manner to be explained later. For each j,
Xgy; 18 vector quantized to obtain its reconstructed version
X ;- The encoded data are decoded through a reverse process
as above, resulting in a reconstructed ECG block Xx,.
Continue in this way, the entire reconstructed ECG signal

A

Sicc can be obtained on-line.
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Fig. 2. A block diagram of the proposed codec.

B. Tree Vector Architecture and Corresponding VQ Coder

Given the n+1 coefficient subbands, we extract m tree
vectors X;y;, where each tree vector is composed of the
coefficients taken from these subbands in a hierarchical tree
order as shown in Fig. 3. Take the first tree vector x,,, as an
example. The first two coefficient pairs from x,, and x,,,

respectively, are assigned to the top and the second layer of
the tree vector, respectively. Next, the first 2 and 4 pairs of
coefficients from x,, , and x,, ,, respectively, are assigned

to the third and the fourth layers. This process continues until
the first 2™ pairs of coefficients from subbandsx,, are

assigned to the bottom layer of the tree vector. This
completes the formation of x,,. For x,,, the second

coefficient pair from x,, is assigned to the top layer of the
tree vector. Continue in this way and follow the example as
above to form X;,. It is trivial to show that the vector

dimension of a tree vector is 2™ .
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Fig. 3. The hierarchical structure of our tree vector.

Based on this architecture of the tree vector, the
corresponding VQ codebook Cj,, is given and shown in Fig.

4. This special codebook, consisting of N tree codevectors
Crvi» 1=1,2,---, N, is available for both encoder and decoder.

The C;, can be obtained using any well-known codebook
training algorithm, say the LBG.

Codebook

CTV

Fig. 4. The tree codebook architecture of the proposed tree codebook.

C. Dynamic Bit Allocation in DCCR Mechanism

Recall that an input vector or its approximation must be
sent or stored as a new codevector when d(x;y,¢,..)>d,

in the DCCR mechanism. In this case, the coding efficiency
is dropped significantly, especially when n is large. How to
increase the coding efficiency in this situation is the key to
the success of the proposed method. Since a tree vector X,

consists of DWT coefficients with great magnitude
differences, it is not efficient to assign a fixed number of bits
to every coefficient. Therefore, a dynamic bit allocation
scheme is needed. Furthermore, the reconstructed distortion
does not have to be zero if a nonzero distortion threshold is
set, thus it is not necessary to represent the new codevector
with a precision more than it should.

With all the considerations above, we found that a DWT-
based scalar quantization (SQ) scheme called SPIHT [6] can
be a perfect solution to our problem. The SPIHT coding
strategy not only performs dynamic bit allocation efficiently
according to the magnitudes of wavelet coefficients, but also
sends or stores encoded data progressively and can be
stopped at the point when the distortion falls within the pre-
specified d, . Therefore, we propose a DCCR mechanism

with the SPIHT coding strategy as follows.
Case (1): If d(x;y,c,,;)<d,, the index i and a bit “1”

indicating case (1) are transmitted or stored. The codebook is
rearranged according to the original DCCR mechanism.

Case (2): If d(x;y,¢,,;)>d,, the index i and a bit “0”

indicating case (2) are transmitted or stored. Then,
components of the difference vector e, =x;,—c, . are

scalar quantized using the SPTHT strategy to obtain €, . The
SPIHT coding process continues until d(X;y.c,..)<d,,

where X;, =c, . +€p,. Finally, the resulting bit stream is

transmitted or stored following the bit representation of i’
and the bit “0”. Here, X, is treated as a new codevector and

is inserted to the codebook according to the corresponding
procedure in the original DCCR mechanism. Note that the
SPIHT bit stream includes a 7-bit header to indicate the
number of bits to be truncated for decoding. The length 7 is
selected here because it is sufficient for all ECG data under
consideration based on the experience obtained from the
simulation study in the next section.

V. SIMULATION RESULTS AND DISCUSSION

To fully demonstrate the coding performance of the
proposed method, a large amount of test data with a wide
variety of waveform characteristics is used here. We take all
records in full length of Lead II data set from the MIT/BIH
arrhythmia database. There are 48 records in the data set and
each record is slightly more than 30 minutes long. The
sampling rate and the resolution are 360 samples/s and 11 bits,
respectively. The numerical values of these ECG data are in
the range from -1024 to 1023. Note that we have subtracted
the 1024 from the original data ranging from 0 to 2047 in
order to comply with the well-known root mean square
difference (PRD) criteria in % [6]. In addition, the
compressed data rate (CDR) [5] in bits/s or bps is used to
evaluate the coding efficiency of the ECG compression
method

In this paper the segment length L=1024, vector
dimension K = 64, codebook size N =1024 and the 6 levels
DWT with biorthogonal 9/7-tap filters are adopted here. The
results in terms of PRD and CDR are depicted in Fig. 5(a)

with various d,’s. Since initial VQ codebooks are all trained

using Rec. 100, each point in Fig. 5(a) is an average result of
one inside test and 47 outside tests of VQ. We select the



d, =60 case from Fig. 5(a) to show the individual PRD of
each record and its corresponding CDR in Figs. 5(b) and 5(c),
respectively. The average PRD of all records is 7.3% at
146bps in this case.
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Fig. 5 Coding performances of the proposed approach using all 48 records in
the MIT/BIH database as the test data. (a) Average performance of all
records using codebook size N = 1024 with various distortion threshold

d,; (b) Individual PRD values for each record with d, =60; (c)
Individual CDR values for each record with d,, = 60 .

Recently, the SPIHT scheme demonstrates its excellent
coding performance in ECG compression [6]. In fact, the
performance is so good that hardly any other recently
published methods can compete with it. Since it is also a
wavelet based coding strategy, it is implemented here for
comparison. In [6], the authors test their methods using 11
MIT/BIH records, including Records 100, 101, 102, 103, 107,
109, 111, 115, 117, 118, and 119. We use the same test
records in full length (slightly exceeds 30 minutes) instead of
10-minute long used in [6]. In addition, we adopt the same
coding parameters of SPIHT as in [6], including 1024
samples in a segment and 9/7 tap biorthogonal filters. The
average results are listed in Table 1. Note that the coding
performances of SPIHT are slightly better than originally
given in [16] and it is mainly due to the use of longer test data.

Nevertheless, given the same CDR, our PRD performances
are superior to theirs in all cases.

TABLE 1.
PERFORMANCE COMPARISOM BETWEEN SPIHT AND OUR
METHOD
CDR (bits/s) 947 1123 1405 1819 246.6 304
SPIHT 169 132 94 6.3 4.1 3.2
0,
PRD (%) Our Method 9.8 8 6.1 4.7 3.5 2.9

VI. CONCLUSION

A WT-based ECG coder using a novel hierarchical tree
vector and the DCCR mechanism in VQ is proposed. The
proposed coder has several advantages over traditional WT-
based VQ coders. Firstly, only one single codebook is
required for various WT subbands. This advantage greatly
reduces the design difficulty in determining good codebook
sizes and codevector dimensions for multiple codebooks.
Secondly, the distortion of reconstructed signal is bounded.
This function is very useful for quality sensitive applications,
including ECG signals. Thirdly, an online dynamic bit
allocation strategy is incorporated in the DCCR mechanism.
This efficient strategy greatly enhances the coding
performance of the coder. With the proposed method and its
associated advantages, a practical ECG coder with super high
coding performance in terms of objective and subjective
criteria is demonstrated in the simulation study.
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